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A solution to the primary "missing mass" problem is found in the context of 
accounting for the coincidence of large dimensionless numbers first noticed by 
Weyl, Eddington, and Dirac. This solution entails (I) a log 2 relation between the 
electromagnetic and gravitational coupling constants; (2) setting the maximum 
radius of curvature at the gravitational radius, 2GM/c2; (3) a changing gravita- 
tional parameter G, which varies as an inverse function of the universal radius of 
curvature. These features motivate the development of a neo-Friedmann for- 
malism, which employs a function, e(X), governing the change from Euclidian to 
non-Euclidian volumes. Observational consequences include (1) a universal den- 
sity of 7.6 • 10- 31 g c m -  3, (2) a Hubble parameter of 15 km s -  i M p c -  i (3) an 
age of the universe of 32 • 109 yr, (4) a gravitational parameter diminishing at a 
current rate of 2.2• 10 -12 yr - I .  and (5) a deceleration parameter of 1.93. 
Moreover, it is shown that for a Friedmann-type (A = 0) cosmology (whether 
open or closed) any deceleration parameter will be represented by a straight line 
in the (log-log) red shift: luminosity-distance space of the Hubble diagram. The 
major claim of this paper is that we have devised a model in which the large-scale 
structure of the universe is completely determined by the values of the funda- 
mental physical constants: c, h, e, and m e setting the scale, and G selecting the 
epoch. 

1. INTRODUCTION 

The chief aim of observational cosmology today is to determine whether 
the universe is open or closed. A closed universe is defined as being 
topologically compact; and within the context of Friedmann cosmologies 
(which set the cosmological constant at zero) a closed universe has a 
maximum radius of curvature to which the universe expands from the "big 
bang" singularity, and from which it contracts to another singularity. If we 
assume a Friedmann cosmology, two measures are sufficient to decide 
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between closure and nonclosure: P0, the average density of matter in the 
universe today, and H0, the Hubble parameter today. Recent measurements 
of these two quantities have led to the conclusion that the universe is open 
(i.e., that it will expand forever). Those who are partisans of a closed 
universe call this situation the "missing mass" problem (Misner, Thorne, 
and Wheeler, 1973). 

Actually, there are other missing mass problems, such as the dis- 
crepancy between the quantity of visible galactic matter and the "virial 
mass" of galactic clusters (Field, 1976). However, this virial mass (even 
though it is greater than the visible mass) is still insufficient to close a 
Friedmann universe, given current measurements of H 0' so that the primary 
missing mass problem remains. 

Hopes for revising Po upward have recently fluctuated: intergalactic 
gasses have been ruled out as a candidate for missing mass (Giacconi, 
1980); and massive neutrinos have been raised to such candidacy (Reines, 
Sobel, Paseirb, 1980). 

For the primary missing mass problem, however, the most relevant 
consideration is the Mathews and Viola (1979) determination of P0 by the 
measurement of deuterium and lithium abundances (which is independent 
of H0). These authors conclude that their value of 4.0x 10 -31 < P0 < 1.4x 
10 -3o g cm -3 (with best guess, 7.1 • 10 -3~ g cm-3), even when combined 
with an H o as low as 40 km s-l  M p c - t  leaves the universe open. 

While astronomers have been largely unprejudiced about the topology 
of the universe, theoretical physicists, beginning with Einstein (for reasons 
of elegance and utility), have tended to believe in a closed universe. Since 
there is observational conflict with a closed Friedmann cosmology, a 
determined partisan of universe closure might be expected to propose an 
alternative to Friedmann's equations. A major perplexity in pursuing this 
line of argument, however, has been the lack of natural constraints on 
possible cosmological models. The strategy of this paper will be to show that 
the physical constants as constituents of large dimensionless numbers 
provide natural constraints which require a closed universe. I will further 
show that, if in this context one postulates that the universe has a maximum 
radius of curvature equivalent to its gravitational radius, a present-day 
universal density of 7.6x 10 -3t is calculated, which accords with the ob- 
servations of Mathews and Viola (1979), and thus eliminates the primary 
missing mass problem. (Since there is not enough visible matter to provide 
this density, a secondary missing mass problem remains, of course. And it is 
this problem that massive neutrinos would be most suited to solve.) 

With the motivation provided by this matching calculation, I will then 
justify the postulated maximum radius formula by developing a neo- 
Friedmann formalism, from which I will calculate a present-day Hubble 
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parameter of 15 km s-~ Mpc-1. Since this and other observable conse- 
quences of the neo-Friedmann cosmology are in disagreement with present- 
day measurements, a decisive test of this model can be expected when the 
NASA Space Telescope (Tammann, 1979) refines distance parameters be- 
ginning about 1985. 

2. LARGE DIMENSIONLESS NUMBERS 

Weyl (1949), Eddington (1935), Dirac (1937), and others have re- 
marked on the coincidence of large dimensionless numbers in physics, which 
can be succinctly formulated as 

a R h - - N '/2 = 104o (1) 
~' R e 

where a is the electromagnetic coupling constant, e 2/hc = 1 / 137.03604; and 
~, is the analogous gravitational coupling constant Gmp m e / hc = 1/3.1099 • 
10 41 (where e is the electron charge, h is Planck's constant divided by 2~r, c 
is the speed of light, G is the gravitational constant, mp is the proton mass, 
and m e is the electron mass). R h is the Hubble radius of the universe, 
equivalent to c / H  o (where H 0 is the present-day Hubble parameter); and R e 
is the classical electron radius, equivalent to e 2 / m e  c2. N is the number of 
nucleons in the universe, estimated in various ways. 

Dirac's (1937) "large-number hypothesis" proposes that these large- 
dimensionless number coincidences are physically meaningful. Since his 
formulation of these coincidences employs a time ratio, 1 / H  o + R e / c  
(which is equivalent to R h / R e ) ,  Dirac proposes that G diminishes as an 
inverse function of time and that matter is continuously created. This 
preserves the algebraic relations in equation (1), but it does not preserve the 
quantity, 104~ Harrison (1972) has suggested a way to preserve both the 
algebraic relations and the quantity, 104o, in equation (1). He proposes that 
the Hubble radius R h be replaced by Rm~ x, the maximum radius of 
curvature in a closed Friedmann universe. Harrison argues that since the 
radius of curvature today, R 0 (which might be within an order of magnitude 
of Rh),  could easily be around ~Rm~ ,, we would surely be struck by the 
coincidence of equation (1), whose ratios would thus be preserved at - 104~ 

Assuming that we accept the physical meaningfulness of equation (1), 
we still must ask if there is any way to decide between Dirac's 
continuous-creation proposal and Harrison's closed-universe proposal. We 
can easily decide in favor of Harrison if we can find a good reason to keep 
the ratios in equation (1) at -104~ I propose that there is another 
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large-number coincidence which fulfills this requirement. Furthermore, I 
propose that this additional large-number coincidence provides a natural 
way to make the coincidences of ratios exact, and in so doing yields 
information sufficient for the calculation of the mass, present-day radius, 
and density of the universe--a density quite consistent with current univer- 
sal density measurements. 

The new large-number coincidence I wish to propose (since 2137= 
1041) is 

2 1 / ~  _ 1 _ 1041 (2) 
Y 

Salam (1970) has proposed a logarithmic relation between a and 7. How- 
ever, the log2 relation in equation (2) suggests a combinatorial Clifford 
algebra theory. Such a theory might be similar to that of Bastin (1971), but 
it should be noted that his 2127 = 1038 relation employs the two-proton form 
of 7, and that he derives 137 from 127 by summing the subset series, 3, 7, 
127, which is thus quite different from equation (2). My reason for saying 
that equation (2) suggests a Clifford algebra is quite straightforward, since, 
by definition (Lang, 1970), a Clifford algebra of dimension 2 n is generated 
on a vector space of dimension n. Of course, such a discrete approach would 
imply that the Clifford algebra formalism employs a discrete a, i.e., 1 / a  d = 
137 exactly. It is therefore fortunate that Burger (1978) has noted the 
Pythagorean relation: 

(137.0360157) 2 = 1372 + q7 2 (3) 

so that a discrete algebraic formalism can be supposed to generate a 
continuous geometric formalism. 

For our present purpose, we shall deal with the geometric side of the 
formalism and shall thus employ the traditional, nondiscrete a. 

At this point, it is sufficient to realize that if (2) is physically meaning- 
ful, Dirac's proposal becomes untenable, and we therefore adopt Harrison's 
closed-universe proposal. Thus we can write 

21/~_ 1 - Rmax-- - 10 41 (4) 
Y Re 

Harrison assumed Rma x tO be (4/3~r)M* (where M *  =- G M / c 2 ) ,  as 
defined in the standard Friedmann formalism. However, if we define 
Rm~ x - R* as the gravitational radius of the universe, 2M* (which we will 
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justify in the neo-Friedmann formalism), we can write 

21/, ' 1 2 G m p N  e 2 
- 3' - c - - - F - - / - -  = 10 41 

m e  c2 
(5) 

which is algebraically equivalent to 

2 1 / `  , _  1 _ 2LN'~ =1041 ( 6 )  
3' ot 

Thus we have incorporated all of the large-number coincidences of equa- 
tions (1) and (2) into a simple, highly restrictive formulation, equation (6), 
from which we can easily derive 

R *  _ 1 ( 6 a )  
Re 3' 

N -- a(2 ' / ` ' )  2 (6b) 

a = Ny 2 (6c) 

Since we have postulated that the large-number coincidences are physically 
meaningful, we are claiming, in effect, that any lack of exactness in 
equations (6)-(6c) must be due to physical factors--preferably a single 
physical parameter. 

Accordingly, we note that because 

and 

21/`" --- 2 h e / : =  1.7863 • 10 41 (7) 

1 hc 
- - -  = 3.1099 • 1041 (8) 

3' Gmpm e 

then 2 j/`" equals 1 / 7  exactly if 

1 hc 
- = = 1.7863 • 10 41 (9) 
3' (1 .7410)Gmvm e 

Thus the exact form of (6) would be 

21/`'= 1 2 3 ' N =  1.7863 x I041 (10) 
(1.7410)3' a 
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Since we are looking for a single parameter to make this equation hold 
exactly, it seems obvious that the single parameter should be a changing G 
in the y term. Indeed, the factors modifying the two "t terms in equation (10) 
suggest a very simple form for this hypothesized changing G. The 2y term 
comes from the use of R* -- 2GM*, which we have defined as Rma x and is 
thus the radius of the universe at a particular time in the future, whereas the 
(1.7410)y term appears to reflect the condition of G today, which would be 
in process of becoming the G of the term 2y. 

Let us call G* the G of 2y, and G O the G of (1.7410)7. Then, let us 
assume that G changes in the simplest way consistent with the requirement 
of making (10) exact. Thus we will propose that G is an inverse function of 
R, the radius of curvature of the universe. Accordingly, 

~c 
a t R m i ~ = R  ', 2 I / ' ~ = -  (11) 

G'mpm e 

today at Ro, 2~/~ = he 
Gorn pm e (12) 

hc 
atRm~,-=R *, 21/~= (13) 

G*mpm e 

where G O is the present-day gravitational "constant," 6.6720 x 10-8 cm 3 g - t  
s-2. Note that this formulation calls for a much smaller overall change in G 
than that proposed by Dirac, since we are requiring h change of only a 
factor of 2 over the entire duration of the evolution of the universe. That is, 

so that 

R 
0 < ~ -  < 1 (14) 

G' 1 
1 < --~- < ~- (15) 

R G' 
R---~ = --G- - 1 (16) 

Thus equations (11)-(16) imply 

G ' =  (1.7410)G 0 = 2G* = 1.616 x 10 -7 cm 3 g - i  s-2 

so that 

(17) 

R 0 
R'---7=0.7410 (18) 
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It is useful, at this point, to define a set of 3' terms in accord with 
equations (10)-(13): 

y ' -  G 'mpme/hc  = 5.5982• 10 -42 ~- 23'* (19) 

3'o - Gompme/hc = 3.2155 • 10 -42  --  (1/1.7410) 3" (20) 

3'* - G*rnpme/hc = 2.7991 • 10 -42 - ( 1 / 2 ) 7 '  (21) 

Accordingly, we can write the exact form of equations (6)-(6c) as 

which implies 

2 , /~  = 1 = 3 " N  = 1.7863• 104' (6')  
y '  ot 

R* 1 
R--~ = 7 - 7  (6a')  

N = a ( 2 ' / " )  2 = 2 .3285  X 1080 (6b')  

a = Ny  "2 (6c') 

In addition, these prime equations imply the exact relation 

R 0 1 1 
R ~ Yo 3" (6d) 

Moreover, since the electron Compton wavelength, he = h/rnec, is the 
fundamental dimensional-analytic length, it is rather nice that equations 
(6a) and (6d) imply 

R* a and R~ a a (6e) 
h e  3't h e Y0 3't 

Thus we are postulating a very restrictive (and interlocking) set of exact 
relations, which we can check immediately by calculating the universal 
present-day density, O0, and comparing it with the O0 = 7.1 x 10 -3t g cm -3 
measured by Mathews and Viola (1979). 

The calculation of O0 is straightforward. We have derived (6') by 
defining R* as 2GM/c  2. Since our changing-G formalism of equations 
(11)-(16) requires that the G of this definition be G*, we can write 

R* =- 2G*M/c  2 = 2G*mpN/c 2 = 5.0337 • 10 28 cm (22) 
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where N = 2.3285 x 1080 as in equation (6b'). Therefore, using equation (18) 

R 0 = (0.7410)R* = 3.730• 1028 cm (23) 

As a consistency check, using equation (6d), we note that 

e2 ( hc _2 , /~)  1028 (23') R 0=  - -  =3 .730•  cm 
meC 2 Gompme 

Thus we calculate the present-day universal density as 

PO -- mpN/TrERo 3 = 7.604• 10 -31 g cm -3 (24) 

Note that the volume formula in equation (24) is for elliptical space, which 
identifies antipodal points and thus has half the volume of spherical space. 
In order to provide a basis for this as well as our definition of R max we must 
develop a new formalism. 

3. THE NEO-FRIEDMANN FORMALISM 

The calculated density of 7.604 x 10-31 g cm-3, so strikingly in accord 
with the Mathews and Viola (1979) "best  guess" measurement of 7.1 x 10-31 
g cm -3, is critically dependent on the use of the gravitational radius as 
Rma x - R* = 2M*, where M* - G * M / c  2. Since the Friedmann formalism 
defines Rm~ as R / =  (4/3)~rM*, where M* is GoM/C 2, our calculation of 
00, which is derived by postulating a closed universe, suggests that the 
primary cause of the "missing mass" problem is the use of a maximum 
radius, R f, which is too small. 

An analysis of the Friedmann formalism reveals that the definition of 
R m~ as (4/3)~rM* ultimately derives from the constant of proportionality, 
8rr, in Einstein's field equation, 

= ( 2 5 )  

where ten functions of radius r in G~,~ are equated with ten functions of 
density p in T~. The presence of the 8~r scalar implies that the O's are 
contained in volume elements of (4/3)~rr 3. This is in keeping with Einstein's 
metric axiom which requires the elements of space to be Euclidian and thus 
in correspondence with Newtonian theory (Misner, Thorne, and Wheeler, 
1973). 
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The Friedmann formalism is ordinarily derived by using Einstein's 
original form of equation (25) in which there is no cosmological term, Ag.~. 
Then by assuming that the universe in large scale is isotropic and homoge- 
nous, and that pressure can be neglected, the ten equations implicit in 
equation (25) can be reduced to one equation: 

G. = 8~rT. (26) 

where T. = O is interpreted as the density of the universe as a whole, rather 
than the density of a volume element. However, whereas the volume element 
can be considered to be Euclidian, the volume of the universe, in general, 
can not. Therefore, the standard Friedmann formalism would seem to be in 
error, since it incorporates the 8~r term directly into the Friedmann equation 
of motion. 

This equation of motion is simply equation (26) written out explicitly 
and algebraically rearranged: 

c-S( at / - - 7 - 1  k 
(27) 

so that for the closed Friedmann cosmology (where k = 1), the definition of 
density which employs the spherical volume formula, p = M/2~2R 3, leads 
directly to the definition of Rma x = (4/3)~rM* (where M* is GM/c2), if we 
write equation (27) in the cycloidal form: 

1( dR 12 Rmax 
c 2 - - ~ - } -  R 1 (28) 

Thus it seems reasonable that, since there is observational conflict with 
the closed Friedmann cosmology, we should attempt to rectify the incon- 
sistency of incorporating the 8~r term (which is a Euclidian volume scalar) 
into the context of a non-Euclidian cosmological volume. 

A consistent procedure would incorporate the necessary step, which the 
Friedmann formalism has omitted in going from the field equation (26) to 
the cosmological equation of motion (27). This necessary step must put the 
scalar term in a form that goes from the Euclidian volume element of 
equation (26) to the appropriate cosmological volume form. 

Such a neo-Friedmann scalar should be written differently for positive, 
negative and flat universal curvature. This scalar is straightforwardly deriv- 
able in three forms from the appropriate volume formulas; and it is to be 
noted that in the case of positive curvature, it is necessary to employ the 
formula for elliptical space (where X is integrated over 0 to ~r/2 rather than 
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over 0 to or): 

V = f0'~/24 IrR 2 sin 2 X ( R d X ) = ~r 2R 3 (29) 

where X is the covariant comoving coordinate related to the radius of 
curvature, R, by 

r = R sin X (30) 

D = RX (31) 

and where r is the radial coordinate defined by area = 4frr 2, and D is the 
measured radial distance (or proper distance). 

From equations (29) and (30) we can construct a volume function of X 
which goes from ~r2R 3 to (4/3)7rr 3, as r /R  = sin X goes from 1 to 0: 

V(X) (2X - s in2x)  = 7rr 3 = e+ (x)~rr  3 (32) 
sin3 X 

where the positive neo-Friedmann function, e+(X), goes from ~r to 4 /3 .  (See 
Figure 1.) 

Analysis of (32) shows that for fractions of the universe smaller than 
(0.8)R, the Euclidian volume is a good approximation, which improves as 
r / R  approaches 0. 

We note in passing that, in addition to cogent geometrical arguments 
for a cosmological elliptical--as opposed to spherical--volume (Weyl, 
1952; Eddington, 1924), we must consider that e§ of equation (32) 
depends on the use of the elliptical volume equation (29). Thus the use of 
this volume in the density calculation of equation (24) is justified by 
consistency. 

From the definition of hyperbolic volume, we can similarly derive the 
negative neo-Friedmann function, z_(X). Thus we can write the family of 
neo-Friedmann function: 

f o r k = + l ,  e+(X)  = 2 x - s i n 2 x  (33a) 
sin3 X 

4 
( X )  = for k = 0, eo(X) = -~ (33b) 

f o r k  = - 1, e_ (X) = s i n h x - 2 x  (33c) 
s inh3 X 

where 0 < e_(X ) < 4 /3 ;  and 4 / 3  < e+(X) ~< or. 
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F i g .  1. T h e  n e o - F r i e d m a n n  f u n c t i o n :  0 < e ( X )  < rr f o r  0 < X < oo.  T h e  u p p e r  c u r v e :  k = + 1, 

r / R  = s i n x ,  e + ( X )  = ( 2 •  - s i n 2 x ) / s i n 3 x  . The l o w e r  c u r v e :  k = - 1, r / R  = s i n h  X, e_(X ) = 
( s i n h 2 x  - 2 X ) / s i n h  3 X. T h e  z e r o  p o i n t :  k = 0, r / R  = 0, % ( X )  = 4 / 3 .  

The neo-Friedmann cosmology is then defined as that set of equations 
which is consistent with the cosmologically interpreted equation: 

Gtt = e ( X ) 6 7 r T  . ( 3 4 )  

Since we are postulating a closed universe, we need to consider here 
only the e§ form of equation (34). From the definition of Rma x = 2M*, 
implicit in equations (32)-(34), and from the model of G changing as an 
inverse function of R, worked out in equations (11)-(16), it is possible to 
construct a self-consistent formalism. Because of its similarity to the closed 
Friedmann cosmology, I call this formalism the closed neo-Friedmann 
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TABLE I. The Neo-Fr i edmann  Formal i sm Compared  with the F r i edmann  Formal i sm 

Closed Fr iedmann cosmology Closed neo-Fr iedmann cosmology 

(A = 0; k ~ l; Rma x = (4 /3~ ' )  M*)"  (A  = 0; k = 1; Rma x = 2M*)  

- ~ (  dR ] 
-fi ~-d-[ I = =:~ - I (35)  

=--~-  - I = - -'~ \--~ ] -'~ \ dt ] T 1 

4 MG 4 2 MG* MG' 
R/=-- Rma x = R* 2M* 37rc 2 -= -~'-~M* =- Rma x c 2 c 2 

G = 6 . 6 7 2 0 •  10 -8  cm 3 g-~ s -2  G O = 6.6720• 10 - s  cm ~ g-k  s - 2  

G'= foG o ~ fG = 2G* 

R /=~--i 

R/  R* 
R = T ( I -  c o s  n )  R = --~- ( t  - c o s  n )  

RI R* 
t = ~c ( r l  - s inr/)  t = ~-c (rt - s i n r t )  

q c 
H = cot(  ~ ) ' ~  same 

M = 2~r2R3p M = 7r2R3p 

8 )-t/2 
R = cl,'~rGo( - H z R = c(~rZG'p - H2) - I/2 

f~ _= _PO 87rGp f~ =- p ~rZG'p 
Pcri~ 3H 2 O~m H 2 

q_= /~2  ~ (1 +COSt/)-  ' q=_l~2=_( l+cosr l ) - '=  ~r2G*p 
H 2 

(36) 

(37) 

(38)  

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

"Note :  A is the cosmological constant,  k is the curvature constant ,  and M* -~ G M / c  2. 
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cosmology. Table I describes explicitly the similarities and differences 
between these two closed cosmologies. 

4. THE CHANGING G 

The neo-Friedmann formalism raises the question: is equation (16), in 
which G varies as an inverse function of R, consistent with the cycloid 
parameter equations (41)-(43)? Since these equations are implicit in the 
equation of motion (36), we are immediately struck by the similarity in form 
between equations (16) and (36). Since, by using G '=  2G*, equation (16) is 

R* 2G'R* 
R GR 

1 (16')  

likewise we can rewrite (36) as 

2C 2 ~ - -  

G'R*  

GR 
1 (36')  

Thus the form of the changing-G equation (16') fits perfectly the form of the 
neo-Friedmann equation of motion (36'). And therefore (16') also fits the 
cycloid parameters, which are the solutions of the equation of motion (36). 

It should especially be noted that the basic form of the neo-Friedmann 
equation of motion (35) employs G' (which does not change). G' is also used 
in the equation for R, (45), and in the density parameter equation (46). It is 
precisely this feature which makes possible a changing-G in the context of a 
formalism of the Friedmann type. 

Canuto (1979) has analyzed the argument that a formalism with a 
changing G would be inconsistent with general relativity. The crux of this 
argument is that general relativity requires the product GM to be constant, 
and that if conservation of mass-energy is maintained, G must be con- 
stant. In the neo-Friedmann formalism, however, we have seen that the 
constant G', operative in the key equations, does not change, so that G ' M  
does not vary. 

Moreover, as Misner, Thorne, and Wheeler (1973) point out, the 
equation of motion for the closed cosmology, especially in the cycloidal 
form 

Z{d~] 2 amax 
c 2 ~ dt  ] R 1 (28') 
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can be  cons idered  as an ana log  to the classical  s t a t ement  of  conserva t ion  of  
energy.  The  first term is l ike k inet ic  energy,  and  the second term is l ike 
po ten t i a l  energy. 

The  n e o - F r i e d m a n n  form of  equa t ion  (28) employs  the changing  G, but  
in such a way  that  the cons tancy  of  the equa t ion  is ma in t a ined :  

l idR)  a'R* 
2c 2 ~ dt G---R- = - 1 (36")  

Thus  we f ind that  this very special  fo rm of  G, which changes  as an inverse 
func t ion  of  R,  is cons is ten t  with genera l  relat ivi ty,  especia l ly  as this theory  
is app l ied  to the universe as a whole.  

The  def ini t ive  test of  this changing-G fo rma l i sm will, o f  course,  be  the 
de tec t ion  of  a change  in G of  the magn i tude  p red ic t ed  by  the closed 
n e o - F r i e d m a n n  cosmology.  F r o m  equat ions  (16), (41) and  (42) it is poss ib le  
to cons t ruc t  an expl ici t  mode l  of  the ra te  of  change  of  G, as in Tab le  II .  

I t  mus t  be  no ted  that  the n e o - F r i e d m a n n  ca lcula t ion  of  the cur ren t  
annua l  rate,  G/G o - - -  2.2 • I0-12 y r - i ,  differs  by  more  than  an o rde r  of  
magn i tude  f rom the Di rac  p red ic t ion  of  - 6 • 10-  t~ y r -  t. Wesson  (1980) 
reviews exper imenta l  evidence which seems to conf i rm the D i rac  rate.  
However ,  McElh inny ,  Taylor ,  and  Stevenson (1978), using pa l eomagne t i c  
tests of  ea r th ' s  expans ion  dur ing  the pas t  400 Myr,  cite an u p p e r  l imi t  of  
- 8 •  10 -~2 yr  -~, which would  rule out  Di rac ' s  p roposa l ,  bu t  r emain  
cons is ten t  wi th  the n e o - F r i e d m a n n  value of  - 6 . 3  • 10-~2 y r - t  du r ing  the 

pas t  500 Myr,  as in Tab le  II .  Clear ly,  our  me thods  of  measur ing  G/G o will 
require  s ignif icant  i m p r o v e m e n t  before  we are  in a pos i t ion  to conf iden t ly  

TABLE II. Predicted Rate of Change of G over Various Epochs 

At G AG AG 1 
(• 109yr) ( •  cm3 g-I  s-Z) (• 10-8 cm3 g - '  s-2) A--7" G--o ~ G---o 

31.872 a 11.616 -4.9440 - 23.2• 10-12 yr- 
10.000 7.2059 - 0.5339 - 8.0 • 10- ~2 yr- 
5.000 6.9087 - 0.2367 - 7.1 • 10- t2 yr- 
1.000 6.7150 - 0.0430 - 6.4 X 10 - t2 yr- 
0.500 6.6930 -0.0210 - 6.3 • 10-12 yr-  
0.250 6.6822 - 0.0102 - 6.1 • 10- t2 yr-  
0.100 6.6757 h - 0.0038 - 5.6 • 10- t2 yr-  

(This calculated series implies the limiting value G/Go = - 2.2 • 10-12 yr- i.) 

"The age of the universe in this neo-Friedmann cosmology. 
bNote that G today, G o, is 6.6720• 10 -8 cm 3 g- i  s -2  
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confirm or deny the neo-Friedmann prediction of a current rate of -2 .2  x 
10-12 yr-1. 

5. T H E  H U B B L E  P A R A M E T E R ,  H 0 

Measurement of the current Hubble parameter is a less problematic 
test of the neo-Friedmann cosmology. Combining equations (22) and (23) 
with equation (41) implies a cycloid parameter, r/o -- 2.074 radians, and thus 
using equation (43) we can calculate H 0 = 4.753• 10 -19 s -t ,  which is 
equivalent to 14.66 km s-1 Mpc-~. Since this value is less than any of its 
measurements to date, precise measurement of H 0 will provide a stringent 
test of the neo-Friedmann model presented here. The difficulty in measuring 
H 0 lies largely in its dependence on long chains of distance parameters 
(Weinberg, 1972). With the refinement of distance scales since the initial 
(Hubble, 1929) determination of this parameter as 513 km s-t  Mpc-i,  H0 
has systematically been revised downward by more than an order of 
magnitude. 

A widely cited recent measurement of H 0 is the Sandage and Tammann 
(1976) value of 50.3 km s-l  Mpc-1. I can demonstrate, however, that their 
paper contains a hint of a drastic future lowering of H 0. Sandage (1975) and 
others have determined H 0 by using giant E galaxies as "standard candles" 
in deriving the red-shift : distance relation. The key unknown in this method 
is the absolute magnitude of the giant E galaxies, which depends on the 
distance to the Virgo cluster, since that is the site of the nearest giant E 
galaxy. There are several ways to determine the Virgo cluster distance scale, 
but the most straightforward uses Type I supernovae in the Virgo cluster as 
standard candles. And it is precisely this method which provides the 
conspicuously large Virgo cluster distance modulus of 32.91 as reported by 
Sandage and Tammann (1976). Their H 0 of 50.3 km s-1 Mpc-l is calcu- 
lated by averaging this enormous distance modulus with several lower 
values, derived by more indirect methods. Moreover, they use E galaxy 
red-shift: magnitude data that was summarized in Sandage (1972), but had 
already been superceded by the more precise data of Kristian, Sandage, and 
Westphal (1978). Curiously, this high-quality data--derived from using 
both SIT photometry and SIT spectroscopy--when combined with the 
Virgo distance modulus of 32.91, yields an H o of 16.5 + 1.6 km s- I Mpc- i. 

There are reports (Vaucouteurs and Botlinger, 1979; Aaronson et al., 
1980) of H 0 at double the Sandage-Tammann rate, which serves mainly to 
emphasize the inconclusiveness of our current measurements. However, as 
the quality of the relevant data improves, especially when the NASA Space 
Telescope (Tammann, 1979) becomes operational in the mid-1980s, we 
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should not be too surprised to see H o approach the neo-Friedmann value of 
14.66 km s-  i Mpc -  i. 

6. T H E  DECELERATION PARAMETER, qo 

Sandage (1970) has characterized cosmology as "a  search for two 
numbers"; and for him these numbers are H 0, as described above, and q0, 
the deceleration parameter, or the rate at which the expansion is changing 
today. By definition 

R~176  (48) 
q o -  Ro 

Of course, q0 is much more difficult to measure than H0, because 
observations at greater distances are entailed in its determination. But qo is 
the most relevant variable in deciding whether the universe is open or closed 
in the sense of whether it will go on expanding forever or not. The critical 
value is 1/2. If qo > 1/2, the universe will attain a maxim radius of 
curvature and then collapse. In Friedmann cosmologies, this also implies 
that the universe is finite and closed in the sense of being topologically 
compact. 

In a closed Friedmann-type cosmology qo is easily calculated from 

qo = (1 + cos T0) - '  (49) 

so that since from equations (22), (23), and (41), 7/o is 2.074 radians, the 
neo-Friedmann calculation of qo is 1.93. 

Support for this value can be found in the recent measurements of 
Baldwin, Burke, Gaskel, and Wampler (1978), who report q0 = 2. However, 
this work entails a new method of measuring what is by all accounts an 
extremely elusive quantity, and so this supporting value must be cited with 
due caution. Only further observations will tell. 

It must be emphasized at this point that the literature on q measure- 
ment is sometimes misleading, because observational data (Weinberg, 1972; 
Sandage, 1972) is presented with alternative q lines bending up and down, 
in the log:log space of the Hubble diagram, and it is thus implied that we 
are waiting for further data to see how the z: d L (or z: m) line bends in order 
to determine q. As a matter of fact, however, if we assume a Friedmann 
universe--whether  open or closed--all  the q lines in the Hubble diagram 
are straight lines of different slope. This is illustrated by explicit calculation 
in Figure 2. 
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Fig. 2. Red-shift:distance graphs for Friedmann-type (A = 0) cosmology, with R* fixed at 
5.0337 • 1028 cm. Solid q lines are for different epochs of a closed cosmology. Dotted q lines 
are for an open cosmology. Heavy line is for q0 = 1.93. 

The family of  solid-line q graphs in Figure 2 represents a closed 
cosmology.  Each of  these q lines is determined by selecting q and calculating 
the chain: .1 = c o s -  l ( 1 / q  - 1), R = (1 - cos*1)R*/2 ,  1 / H =  t a n ( * 1 / 2 ) ( R / c ) .  

Then select a set of '11 for which R I = (1 - c o s * 1 1 ) R * / 2 ,  z = ( R  - R I ) / R  I, 
dr. = ( c / H q 2 X z q  + ( q  - 1)[(2zq + 1) W2 - 1]}. It is to be noted that each 
such q graph is a straight line representing an epoch, t(*1), during which 
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the shape of the Hubble diagram would remain as in Figure 2, but with the 
d L and m values shifted to the right or to the left. 

The Friedmann and neo-Friedmann cosmologies do differ in their 
predictions of density, given an identical Rma x.  For example, the closed 
neo-Friedmann density prediction of this paper is 7.61 • 10 -31 g cm -3, 
whereas, for the same R max, the closed Friedmann density prediction is 
1.56 • 10 -30 g cm -3, which is just outside the range of the Mathews and 
Viola (1979) measurement of Po. 

The predictive differences of these two cosmologies may not seem 
great, yet the conceptual difference is very great, as illustrated by the ability 
of the neo-Friedmann formalism to provide a way of determining R m a x  ~ R*. 
Other conceptual differences are explicitly detailed in Table I, which 
formalizes the G-changing aspect of the neo-Friedmann cosmology. The 
specific predictions of this changing-G are contained in Table II, which 
predicts a current annual rate of - 2.2 • 10- 12 yr -  i. The other predictions 
of the closed neo-Friedmann cosmology are summarized in Table III. 

7. COMPARISON WITH EDDINGTON 

Since Eddington (1935, 1936, 1946) was one of the earliest and most 
prolific writers on the implications of the large-number coincidences in 
physics, this paper can hardly be complete without comparing our approach 
with his. 

Essentially, the approach of this paper is the inverse of Eddington's. 
For he builds up a model of the universe from which he derives the physical 
constants; whereas, we build up a model of the universe as a function of the 
physical constants. In both cases the large-number coincidences are used as 
clues for model building, but quite different models are constructed. 

Our belief is that Eddington's goal of accounting for the values of the 
physical constants is achievable only after a model such as ours is worked 
out and confirmed observationally. That is, we must be sure we know what 
role the physical constants play before we can account for the particular 
values they have. 

An analysis of our model (the neo-Friedmann formalism) shows that 
the values of c, h, e, and m e are sufficient to determine R*. Therefore, as we 
have shown in Figure 2, the complete family of q lines for the universe is 
determined by just these constants. In order to select a particular q line, we 
must know (in addition to these constants) the values of G and mp. Since G 
is the only variable in this model, we would like to have a fundamental 
formula for the mass ratio m p / m  e. Eddington (1936) has proposed such a 
formula, but it is generally considered to be flawed. This author (1977) has 
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suggested the alternative, more straightforward combinatorial formula: 
mp/rn e = P2136/10 = 1836. If we take this formula into account, we can say 
that in the model presented here, it is essentially G which selects the epoch. 

Future generalizations of this model could, of course, make other 
parameters, such as m e (or combinations, such as a) into variables. In this 
way, it might be possible to begin the construction of a fundamental 
account of the physical constants, such as Eddington attempted. 

8. DISCUSSION 

It has sometimes been said that the first law of cosmology is: 1 = 10. 
This " law" is invoked implicitly in most discussions of the "large-number 
hypothesis." We have found in the present paper, however, that a better 
strategy is to follow up the realization that on a large scale things are most 
likely to be symmetric and simple, and that therefore on the cosmic scale 
one can hope for a measure of precision unobtainable elsewhere. Just as 
Eratosthenes (c. 250 B.C.) could successfully calculate the radius of curva- 
ture of the surface of the earth by making symmetrizing assumptions and 
ignoring local irregularities, so we today can hope to similarly calculate the 
radius of curvature of the universe. As soon as one asks: how can the 
large-number coincidence relations be put into a form that is exact but still 
in agreement with general relativity?--the results of this paper follow. 

Eratosthenes had to wait for Magellan's sailors (in 1522) to confirm his 
calculation, therefore it is fortunate for us that our calculation of R 0 = 12.09 
Gpc implies an H o of 14.66 km s-J Mpc-1, which is likely to be decisively 
confirmed or denied within less than a decade. 

Intrinsic to the formalism of this paper is the neo-Friedmann function 
which governs the change from a Euclidian to a non-Euclidian volume. 

Our central observational claim is the straight q-line Hubble diagram 
for Friedmann-type cosmologies, which is derived simply by fixing R*. 

Our central theoretical claim is that the large-scale structure of the 
universe can be derived from measurement of the fundamental physical 
constants: c, h, e, and rn e setting the scale factor R*, and G determining the 
epoch. 

Only observation will tell whether all or any of this is true. 
Postscript: Spinrad, Stauffer, and Butcher [Astrophysical Journal, 244, 

382-391 (1981)] have measured magnitudes at various frequencies for two 
extremely distant galaxies: 3C472.1 (z=1.175) ;  and 3C13 ( z= l . 050 ) .  
These apparent magnitudes are approximately 22 and 21, respectively. Thus 
these data fit the q0 = 1.93 line of Figure 2, which also implies H 0 = 14.66 
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km s - I  Mpc-~ ,  and  that the absolute  magn i tude  of the s tandard  candle  
giant  E galaxies is a round  - 2 5 .  

As stated above, this absolute magn i tude  will no t  be well established 
unt i l  the proper  distance to the Virgo cluster (site of the closest such galaxy) 

is m e a s u r e d - - i n  an H 0 independen t  f a s h i o n - - b y  the Space Telescope 

a round  1985. 
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